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Abstract 
 
Fecal contamination in water bodies can increase risk of illness in humans through contact during 
recreational activities such as swimming and wading.  Federal guidance and state standards imply an 
estimate of the risk related to contact recreational use; however, an examination of the history of these 
standards reveals the link between illness and concentration to be less clear.  This study also reviewed the 
theoretical foundations for monitoring bacteriological water quality.  This review found that the geometric 
mean is an acceptable statistic if it is combined with another statistic or if it is transformed by the 
logarithm.  Under a log-transformation, the logarithm of the geometric mean equals the mean of the 
logarithms.  This property was then used in analyzing monitoring results.  E. coli data collected by the City 
of Austin was used to categorize creek segments into three sets.  The first set of creeks consisted of those 
creeks that had a geometric mean less than the State of Texas Contact Recreation standard of 126 E. coli 
cfu/100mL.  The second set of creeks were those that had a geometric mean greater than the state 
standard but had less than 50% of their samples over 399 E. coli cfu/100mL (the state single-grab 
standard).  The third set of creeks incorporated those creeks that had a geometric mean greater than the 
state standard and had more than 50% of their samples over 399 E. coli cfu/100mL.  The results of this 
study will enable the City of Austin to prioritize the watersheds that have had and are likely to continue 
to have high levels of bacteria; allowing for better allocation of resources to stream reaches. 
 
Also presented are considerations for two modifications to the current EII monitoring program to track 

changes of bacteriological water quality over time.  The first modification is to assess the creek segments 

from a statistical perspective.  The second modification is to assess the creek segments based on potential 

health impacts for comparison to some threshold.  To develop a threshold that is relevant to human 

health, a plausible model detailing the relationship between Escherichia coli (E. coli) concentration and 

the risk of contracting waterborne illness is presented.   

 



Introduction 

 
Recreational contact fulfills a basic human desire to be near or in water.  Barton Springs Pool, a popular 

natural swimming area, receives about 800,000 visitors every year.1  Furthermore, many of Austin’s creeks 

are popular for swimming, wading, kayaking and fishing. However, fecal contamination from humans and 

other warm-blooded animals can threaten these recreational waters.  As a result, management of these 

resources is key in protecting public health for those visiting Austin’s creeks.  This management consists 

of tracking the status of bacteriological water quality, identifying solutions that reduce fecal 

contamination, and informing the public on the quality of its creeks. 

A thorough monitoring program (which is comprised of both sampling the waterbody and statistically 

analyzing the data) can aid in these management goals by addressing whether a waterbody is degrading 

in terms of fecal contamination, by recommending remedial action to decision-makers, and by providing 

relevance to public health risks in each water resource.  The Environmental Resource Management (ERM) 

Division of the City of Austin Watershed Protection Department (WPD) developed such a program in the 

Environmental Integrity Index (EII).  This routine monitoring program was established in 1994 and includes 

an assessment of recreational contact as a designated water use, which is typically evaluated through 

bacteriological water quality monitoring for all of its creeks.  This long-term data collection provides 

decision-makers with an extensive data set from which to evaluate each of Austin’s creeks. 

This report explores two topics of interest to ERM decision-makers.  First, this report compiles E. coli data 

collected for each Austin stream segment (denoted as an EII reach) and categorizes every EII reach in 

Austin by state water quality standards for contact recreation.  This categorization can prioritize EII 

reaches and suggest sources to investigate to resolve high E. coli concentration in these reaches.  The 

ability to determine which stream needs a certain solution can increase the efficiency of city funds and 

time.  Furthermore, this categorization can apprise the public on the characterization of certain creeks 

that may inform personal decisions for contact recreation. 

Second, it informs a more effective monitoring program to improve the EII assessment of contact 

recreation in Austin creeks.  This proposal is based on the theoretical underpinnings of monitoring for 

bacteriological water quality.  Specifically, properties of the geometric mean are examined along with 

methods in assessing data collected in each creek for contact recreational use.   

Before delving into bacteriological water quality in Austin’s streams, a couple of terms should be 

introduced.  First, the idea of contact recreational use is clearly defined through the Texas Administrative 

Code (30 TAC §307) as applying to intermittent streams, intermittent streams with perennial pools, 

nontidal wetlands, and perennial freshwater streams and rivers.  This part of the code partitions contact 

recreational use into two activities: primary contact recreational use and secondary contact recreational 

use.  Primary contact recreational use assumes that water recreation activities consist of wading by 

children, swimming, water skiing, diving, tubing, surfing, and any activity involving a significant risk of 

ingestion of water2.  Secondary contact recreational use assumes water activities with limited body 

contact and pose a less significant risk of water ingestion. While the criteria in the code can serve as 

                                                           
1 Source:  https://austintexas.gov/department/barton-springs-pool 

2 30 TAC 307 further partitions primary and secondary contract recreation each into two sub-categories based on 
the frequency of interaction with the water body based on its physical characteristics and limited public access. 

https://austintexas.gov/department/barton-springs-pool


guidance for the public from contracting waterborne illnesses due to contact recreation in its streams, it 

is not an absolute protection from contracting these illnesses.  30 TAC §307.7 cautions that “even where 

the concentration of indicator bacteria is less than the criteria for primary or secondary contact recreation, 

there is still some risk of contracting waterborne diseases.”    

The second topic is the use of indicator bacteria as a surrogate for waterborne pathogens.  The three main 

groups of organisms that are responsible for waterborne microbial infections are viruses, bacteria, and 

parasites.  However, predicting health risks from these different organisms is difficult due to their varying 

virulence, potency, and pathogenicity, as well as the susceptibility of the infected individuals and the 

prevailing environmental conditions.  Nevertheless, various epidemiological studies have been conducted 

exploring the dose-response curve for the different pathogens.  The National Research Council (2004) 

summarized these studies and concluded that indicator bacteria, such as Escherichia coli (or E. coli), in 

recreational waters can sufficiently predict waterborne illness rates for those engaging in contact 

recreation regardless of the organism.  However, they caution that the high variability in the relationship 

should be better quantified.        

 

The two concepts of state restrictions on the usage of recreational waters due to fecal contamination and 

using concentrations of E. coli as a proxy for fecal contamination has simplified the management of water 

resources in protecting public health from waterborne illness due to contact recreation.  The following 

section provides context for these two concepts through a review of 1) the origin of federal and state 

water quality standards and subsequent rationale that established current contact recreational standards 

and 2) the statistical framework for monitoring concentrations of E. coli.  This will then provide a setting 

for future examination of the data collected under EII on bacteriological water quality.  

   

Background 
 

Regulatory Considerations 

 

Federal Guidance  

Starting in the 1920’s, the American Public Health Association (the national professional organization for 

public health practitioners) began exploring the incidence of waterborne illnesses during recreational 

water use.  However, these early studies failed to detect health problems, and thus, refrained from setting 

bacterial standards (Wymer, 2007).  Because of this reluctance, many states began to implement their 

own water quality criteria for recreational water use.  Early state criteria varied wildly in the methods; and 

as a result, there was no agreement on contact recreational standards.  Notably, these state criteria were 

based on heuristics rather than on health effects.  This led to numerical criteria for these state standards 

to vary by an order of magnitude.  Nevertheless, the participating states each had agreed on using total 

coliform bacteria counts as the key parameter in setting contact recreation standards and on obtaining 

these counts using the Most Probable Number (Wymer, 2007).   

By the late 1940’s the federal government recognized this variability in state criteria and the lack of health-

based information.  In response, the US Public Health Service (US PHS) launched a series of experiments 

to examine the relationship between bacterial water quality and waterborne illness.  From these studies, 

Stevenson (1953) recommended that the median total coliform density not exceed 2,300 counts per 100 



mL.  In 1968, the National Technical Advisory Committee (1968) to the Federal Water Pollution Control 

Administration (FWPCA) adopted the 2,300 count per 100 mL standard from Stevenson but noted that 

total coliforms were not an accurate indicator of fecal contamination and suggested the more specific, 

fecal coliforms.  They noted a study which showed the relationship of fecal coliforms to total coliforms 

was about 18%.  They state: 

Fecal coliforms should be used as the indicator organism for evaluating the microbiological 

suitability of recreational waters.  As determined by multiple-tube fermentation or membrane 

filter procedures and based on a minimum of not less than five samples taken over not more 

than a 30-day period, the fecal coliform content of primary contact recreation waters shall not 

exceed a log mean of 200/100mL, nor shall more than 10% of total samples during any 30-day 

period exceed 400/100mL. 

From this one can see that: 

1. the new fecal coliform standard of 200 colony forming units (cfu) per 100 mL comes from the 

Stevenson study (i.e. 200 ≈ 2300 X 0.18 / a factor of safety of 2 suggested by the Committee); 

2. the log mean was used to aggregate a set of samples to compare against the criteria; and 

3. a second criteria was set to compare against the 90th percentile of the sample set.   

Interestingly, the term “log mean” was not defined.  It can either connote the average of the logarithm of 

the numbers or the logarithm of the average of the numbers.  The average of the logarithm of the numbers 

equals the logarithm of the geometric mean of the numbers.  While the logarithm of the average of the 

numbers is the logarithm of the arithmetic mean (or average) of the numbers.  As will be discussed, the 

geometric mean and arithmetic mean are two different numbers.  The following paragraphs indicate that 

the writers of the federal guidance intended to use the logarithm of the geometric mean of the numbers 

as a statistic.        

By 1972, the US Environmental Protection Agency (US EPA) adopted these criteria for the establishment 

of state water quality standards.  This initial attempt at establishing water quality standards was met with 

criticisms regarding the biased and vague selection of data in the studies.  See Wymer (2007) for a 

complete review of the criticisms.  As a result, the US EPA performed an additional series of studies to 

evaluate the health risks of swimming in contaminated waters.  These studies precisely defined what 

qualifies as swimming activities and disease symptoms.  The studies looked at a marine location (Cabelli, 

1983) and a freshwater location (Dufour, 1984) and found that the concentrations of Enterococci in salt-

water were correlated to gastroenteritis due to swimming activities.  The later study by Dufour (1984) 

found a strong correlation between swimming-related gastroenteritis in freshwater and concentrations 

of E. coli, but not with fecal coliform bacteria.  As a result of this study, a statistical model was developed 

expressing the link between the risk of contracting a swimming-associate gastrointestinal illness in fresh 

waters to concentrations of E. coli, rather than fecal coliform.  That model is:  

𝑦 = −11.74 + 9.40(log 𝑥)       (1) 

In Equation 1, y is the swimming-associated gastrointestinal illness rate per 1,000 swimmers, and x is a 

concentration of E. coli cfu per 100 mL.   

In 1986, the US EPA recommended new criteria using E. coli as an indicator bacterium for fecal 

contamination in recreational waters (Federal Register, 1986).  Since the 1972 US EPA standard of 200 cfu 



of fecal coliform per 100 mL correlated to an illness rate of 8 illnesses per 1,000 swimmers, Equation 1 

established the E. coli water quality standard of 126 cfu per 100 mL by simply substituting 8 into y in 

Equation 1.  Thus, US EPA has essentially kept the same risk level from previous studies without re-

evaluating the acceptance of these risk levels or the assumptions of the past studies.  Furthermore, 

Equation 1 gives negative illness rates at low E. coli concentrations. 

By the 1990’s the US EPA embarked on other sets of bacteriological water quality studies.  Of import is 

the EMPACT study (Wymer, 2005), which looked at the spatio-temporal variability in E. coli samples in 

freshwater and marine sites.  The results of this study showed that there was a significant difference in 

the time of day that samples were collected.  Samples collected at 2:00 PM had less concentrations of E. 

coli than those collected at 9:00 AM.  The authors attributed this decline in E. coli concentration to die off 

due to ultraviolet radiation throughout the day.  Spatially, the variability in samples collected was too 

large to make any meaningful conclusions.   

State of Texas Water Quality Standards for Contact Recreation 

Water quality standards in Texas somewhat mirror that of the federal government.  Prior to the 1960’s, 

the extent of surface water quality protection amounted to the receipt of annual reports from sewerage 

and wastewater treatment companies to the Secretary of State.  In 1961, the Texas Pollution Control Act 

established the Texas Water Pollution Control Board (TWPCB), which founded the state's first true 

pollution control agency.  The TWPCB had the ability to inspect and investigate conditions relating to 

pollution in addition to promoting voluntary cooperation to restore and preserve water by encouraging 

the formation of advocacy groups.  Furthermore, the TWPCB conducted experimental studies to research 

pollution abatement and control problems, including the treatment of sewage, industrial, and other 

wastes.  By 1967, the TWPCB was superseded when the Texas Water Quality Act was passed, which 

established the Texas Water Quality Board (TWQB).  The TWQB assumed the functions, powers, duties, 

and responsibilities of the TWPCB and became the chief state agency to oversee water quality.  

Bacteriological water quality standards were first offered in the Water Quality Requirements (Texas Water 

Quality Board, 1967), which state that for “water-oriented recreation”: 

a flexible guide-line to be used in the light of conditions disclosed by the sanitary survey [is that] 

the geometric means of the number of fecal coliform bacteria is less than 200 per hundred 

milliliter and not more than 10% of the samples during any thirty day period exceed 400 fecal 

coliform bacteria per hundred milliliter.  This policy is advisory only and in no way limits the 

responsibilities and authorities of local health agencies.   

This matches federal guidance from the FWPCA with the exception that Texas guidance stipulates a 

geometric mean of the samples rather than the “log mean”.  By 1976, the Texas Water Quality Board 

(Texas Water Quality Board, 1976) promulgated this guidance into bacteriological water quality standards, 

which used the term “logarithmic mean (geometric mean)” of samples.  The term was modified back to 

the geometric mean in the 1990’s, but the standards for fecal coliform remained until revisions under the 

2000 Water Quality Standards, which employed E. coli sampling.  The current state of bacteriological 

water quality standards for E. coli come from 30 TAC §307.7 (b) (1) (A) (i), which states that for primary 

contact recreation, the “geometric mean criterion for E. coli is 126 per 100 mL.  In addition, the single 

sample criterion for E. coli is 399 per 100 mL.”   



Studies conducted by City of Austin 

The City of Austin Watershed Protection Department has collected both fecal coliform (as early as 1991) 
and E. coli (since 1999) through several different programs under its various names over the past 30 years.  
The primary baseflow sampling program over this period is the Environmental Integrity Index (EII) which 
has provided the data for numerous reports evaluation the status and character of the water quality of 
Austin creeks. Pertinent conclusions of some previous reports include: 

 Richter (2013) related fecal coliform counts to E. coli counts using over 2200 data pairs.   

 Porras, Richter, and Herrington (2013) related concentrations of E. coli under baseflow conditions 
to land use data using a multiple linear regression.  This regression can be used to estimate E. coli 
concentrations at any stream segment location in Austin.   

 Zhu and Glick (2017) characterized concentrations of E. coli under storm flow conditions.   Jackson 
and Colucci (2011) visited various EII sites for signs of contact recreation and assigned scores 
accordingly.   

 
These reports can be used for predictions of E. coli concentrations and can be compared to future data 
obtained during EII.     
 
In summary, the regulatory standards above provide criteria for determining whether waterbodies are 
impaired for recreational water use.  The current 126 E.coli cfu/100mL standard was developed from the 
same risk threshold of 200 cfu of fecal coliform, which was just an estimate of the health risk of 2,300 cfu 
of total coliform from biased studies conducted from midcentury.  Thus, federal and state standards, while 
widely accepted, are still somewhat arbitrary in that they are not based on a statistically rigorous design 
or on epidemiologically relevant thresholds.   
 

Statistical Considerations 

 
Just as knowing the background of regulatory guidance is key to understanding the current criteria for 
bacteriological water quality, knowing the statistics behind bacteriological water quality is also key to 
understanding how E.coli measurements in the creeks can be compared to the current criteria.  Under 
this section, properties of the geometric mean statistic will be discussed as a metric for looking at 
bacteriological water quality data. 
     
The Geometric Mean as a Statistic for Bacteriological Water Quality 
The geometric mean, which is defined as the nth root of the product of n values, is a statistic that is typically 
reserved for characterizing multiplicative processes.  Regarding bacteriological water quality, some have 
questioned the use of the geometric mean as an appropriate statistic in measuring risk of illness (Haas, 
1996 and Crump, 1998) and as a regulatory standard (Parkhurst, 1998).  However, these concerns can be 
addressed by recognizing the properties of the geometric mean.     
 
The most valid reason for using the geometric mean is its ubiquity in microbiology.  Furthermore, the 
geometric mean most accurately represents the process of finding the average of a data set that has been 
transformed by the logarithm.   While Wymer (2007) found that a negative binomial distribution provided 
a good fit for E. coli samples collected in freshwater, he also found that this data set can be approximated 
by a log-normal distribution.  Furthermore, the log-normal distribution has a lower zero bound and is 
typically right skewed, which also reflects the statistical properties of microbial densities.   
 



Landwehr (1978) analyzed the use of the geometric mean as a statistic to assess microbiological water 
quality.  In it, he provides some facts on the properties of a geometric mean.  First, the geometric mean 
of a data set is always less than the arithmetic mean (or average)3 of that data set.  Thus, the geometric 
mean and arithmetic means can provide very different measures of central tendency in the sampled 
distribution.  This can lead to concerns over using the geometric mean to assess risk.  Since the geometric 
mean is always less than the arithmetic mean, then using the geometric mean may give the impression 
that higher values of E. coli counts are not likely4 for highly skewed probability distributions, such as a log-
normal distribution.  For example, realizations from a highly skewed log-normal distribution with a 
geometric mean of 100 can still generate counts close to 1000.  However, Landwehr contended that the 
extent to which the geometric mean and arithmetic mean are different is mostly a function of the skew 
of the sampled distribution.   
 
The sample skew, as provided by Lanwehr, is calculated as: 

     𝑔 =
[
𝑠2
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+1]3−3[
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             (2) 

Sample skews close to unity indicate a symmetric distribution (i.e. the geometric mean and arithmetic 
mean are similar), whereas a sample skew greater than 5 may point to a right skewed distribution.  Thus, 
sampled data from reaches with a large skew can inform users to the wide spread of data and can alert 
decision makers to the risks of contact recreation from a highly skewed sample.  Similarly, a smaller skew 
can designate a sampled distribution as less likely to obtain samples with large E. coli counts, and any large 
E. coli counts can be attributed to a problem event.    
     
Additionally, the skew can also specify the degree to which this geometric mean decreases with additional 
sample sizes.  Sampled data with a skewness approximately equal to 1 exhibits less sensitivity in the 
geometric mean from additional samples.  Those sample distributions with larger skews tend toward 
sensitive movements in geometric means from additional samples.  Thus, the sample skewness helps 
inform users whether collecting more samples will lower the future geometric mean of the data.  It can 
also assist in establishing whether a sample set can be characterized as stable.   
 
Landwehr also shows that for log-normally distributed data, as the sample size increases, the geometric 
mean decreases until it approaches the median of a log-normal distribution.  This reinforces the criticism 
of using a geometric mean as a regulatory standard.  That is, if data from a water body exceeds a water 
quality standard, more samples can be taken to lower the geometric mean and bring that water body into 
compliance.  Thus, as an alternative to calculating the skew, Landwehr points out that as more samples 
are taken, the probability of getting a single sample above a higher threshold increases due to the right 
skewedness of a log-normal distribution.  Thus, the combination of the criteria on the geometric mean 
and the single sample standard can make effective criteria in assessing a water body.  This was effectively 
established in the state water quality standards by comparing the geometric mean to 126 cfu per 100 mL 
and requiring that single sample criteria not exceed 399 cfu per 100 mL.  This approach was also used in 
classifying EII reaches for this report; however, the skew was also presented for comparison.   
 

                                                           
3 The exception to this rule is when every number in the data set is equal.  Thus, both the average and geometric 
mean are equal.   
4 Taleb (2008) has an engaging book on the risks of not accounting for these “black swan” events. 



Results 
 
E.coli data from the EII program was sorted into a “recent” (2012-2018) data set and a “long term” (2005-
2018) data set to provide temporal relevance.  Creeks in the EII program are divided into segments called 
“reaches” and the data collected from sites within each reach is combined to represent that segment of 
the water body.  Geometric means and the skew were computed for each EII reach for the recent and 
long-term data sets.  Reaches were then categorized by those that exceed and those that meet the 
regulatory standard of a geometric mean of 126 cfu of E. coli per 100mL.  Those EII reaches with a 
geometric mean at or below 126 cfu per 100 mL were denoted as acceptable (Appendix A). Those EII 
reaches whose geometric mean was greater than 126 cfu per 100 mL are further divided into two 
categories: episodic and chronic.  The episodic category includes those reaches in which less than 50% of 
the samples exceeded 399 cfu per 100 mL (Table 2).  This episodic category implies that a high geometric 
mean of a reach is skewed by a small number of high E. coli count episodes.  The chronic category includes 
those reaches in which more than 50% of the samples exceeded 399 cfu per 100 mL (Table 3).  This chronic 
category implies that the high geometric mean results from a more consistently elevated E. coli 
concentration.   
 
Table 1 depicts the twenty EII reaches with the lowest geometric means to give a sense of which EII 
reaches have the lowest concentrations of E. coli and the level of that concentration.  A total of 80 EII 
reaches were categorized as acceptable (Appendix A).  As expected, the geometric mean for each EII reach 
is less than the arithmetic mean.  In most cases the arithmetic mean and geometric mean for the 
acceptable reaches are similar as evidenced by the low sample skew.  A notable exception is South Fork 
Dry (SFD2), which had an arithmetic mean of 210 and a skew of 40.9.  In this case, an E. coli measurement 
of >2,419 cfu per 100mL was obtained in 2012 that drastically shifted the arithmetic mean, but barely 
impacted the geometric mean.  This highlights the importance of looking at the sample skew in addition 
to the geometric mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1:  EII Reaches with the 20 Lowest Geometric Means 

 2005-2018 E. coli Data Set  2012-2018 E. coli Data Set 
EII 
Reach 

Geometric 
Mean Count 

Sample 
Skew 

Arithmetic 
Mean  

Geometric 
Mean Count 

Sample 
Skew 

Arithmetic 
Mean 

RIN2 8.2 14 6.3 17.3  6.3 9 8.0 15.5 

BAR3 9.4 21 3.4 15.4  6.0 12 4.5 10.8 

LBA1 12.7 23 2.3 17.1  11.7 15 2.0 14.9 

SLA1 13.8 23 7.5 32.3  8.6 15 4.1 17.9 

BEW1 15.9 3 2.2 20.3  15.9 3 2.2 20.3 

PAN1 17.0 19 15.7 51.7  10.8 11 18.5 63.5 

SFD2 17.1 13 40.9 210.5  14.8 11 35.8 241.5 

BER3 18.7 22 8.2 41.3  13.8 14 4.2 26.9 

MAR2 19.6 15 9.5 57.1  22.2 11 8.5 69.0 

DKR1 20.9 28 16.4 58.3  32.3 12 13.4 92.3 

LBA3 21.3 20 3.5 36.3  17.9 12 4.6 30.4 

BAR2 22.4 23 3.8 31.4  25.9 12 2.4 31.6 

WLB2 22.4 3 3.0 41.4  22.4 3 3.0 41.4 

BER1 23.8 20 2.7 37.6  15.2 13 3.3 25.6 

BUL2 25.1 34 5.3 41.7  25.0 14 4.5 44.1 

BAR5 25.4 16 6.2 61.9  20.0 11 7.5 66.4 

LBR2 25.4 13 14.1 76.7  25.0 7 3.0 37.4 

BEE1 25.4 21 2.5 33.2  26.6 13 2.2 34.2 

BUL3 25.8 35 60.5 109.5  22.7 15 5.9 44.7 

ONI6 26.2 22 12.4 82.2  28.2 15 8.1 69.0 

 

Interestingly, for 15 of the 20 sites in Table 1, the long-term (2005-2018) data set had higher geometric 

means than the recent (2012-2018) data set.  This is contrary to what is expected from a stable log-normal 

probability distribution where collecting more samples lowers the geometric mean.  This can indicate 

either a changing environment (a temporal trend toward less E.coli contamination) or that the underlying 

E. coli probability distributions are not log-normally distributed.  Given slightly more data, statistical tests 

can be performed to determine whether the distributions are log-normal. If the tests indicate that the 

data are log-normally distributed, then it may indicate that the creeks are being impacted by decreasing 

levels of fecal contamination.  

Table 2 below shows the EII reaches that were categorized as episodic.  Interestingly, the EII reaches that 

were episodic had 16 out of 27 sample skew numbers less than 5.  This is contrary to what was expected 

in this category of reaches that consist of a geometric mean above 126 cfu per 100 mL due to occasional 

instances (hence “episodic”) of large E. coli counts.  Rather, those reaches with low skews indicate a 

symmetric probability distribution and a smaller range of E. coli concentrations that are not as impacted 

by episodic high E.coli events.  Given that these EII reaches had a geometric mean greater than 126 cfu 

per 100 mL, this points to a consistent, but lower levels of possibly non-point sources of E. coli.  

Additionally, only 8 out of the 27 reaches from the 2005-2018 data set had geometric means greater than 

the 2012-2018 data set.  This may point to those reaches which are starting to exhibit changes to higher 

concentrations or different sources of E. coli. 



From these remarks, two statistical concepts can be further evaluated.  First, the skew statistic may be a 

better predictor of episodically high E.coli events than using a single sample criteria.  Second, examining 

a time series of increasing geometric means within reach can point to areas where E.coli counts are 

increasing.   

Table 2: “Episodic” EII Reaches. EII reaches with E.coli sample results with a geometric mean greater 

than 126 cfu per 100 mL for at least one of the data sets, and less than 50% of the samples included 

concentrations exceeding 399 cfu per 100 mL. 

EII 
Reach 

2005-2018 Data Set 2012-2018 Data Set 

Geometric 
Mean 

Count Skew Arithmetic 
Mean 

% above 
399 

Geometric 
Mean 

Count Skew Arithmetic 
Mean 

% above 
399 

WLN5 126.7 25 5.12 179.8 12% 107.2 12 1.7 120.8 0% 

DKR3 132.2 17 10.15  412.9 29% 140.6 10 10.7 340.4 20% 

TAN2 136.1 22 4.04 206.4 18% 164.1 12 2.8 215.2 17% 

RDR1 140.0 22 6.06 313.3 32% 169.6 11 4.8 295.2 27% 

GIL3 140.5 27 2.27 174.3 11% 162.8 11 1.1 172.9 9% 

WLN3 141.2 21 3.25 193.9 14% 151.3 11 3.6 193.7 9% 

GIL1 142.3 28 2.72 186.7 7% 145.4 12 1.9 176.3 8% 

DRN2 149.4 10 3.55 219.3 30% 77.6 1 - 77.6 0% 

RAT1 151.6 8 3.60 227.9 38% 270.3 5 2.3 325.8 40% 

MAR1 162.8 26 5.41 291.6 31% 203.9 15 2.6 277.6 27% 

CCE1 164.5 8 3.72 252.9 38% 222.6 5 3.3 322.8 40% 

SHL3 164.6 21 3.97 265.9 24% 150.4 10 3.4 190.5 10% 

WBO3 169.3 19 8.35 376.2 26% 296.9 9 6.2 584.2 33% 

LWA3 170.0 23 3.46 263.6 39% 174.8 12 4.0 251.2 25% 

HRS1 176.1 30 6.33 342.1 30% 154.3 11 3.2 230.8 18% 

GIL5 186.3 28 1.79 224.3 11% 195.1 12 1.3 214.0 8% 

EAN2 194.7 18 8.59 372.6 28% 241.6 10 7.2 530.0 30% 

WBL1 199.2 21 5.46 388.1 29% 178.7 12 3.8 330.0 25% 

CCW1 202.4 8 2.15 276.1 38% 181.5 7 2.4 253.3 29% 

WBO1 216.6 9 6.05 401.2 33% 216.6 9 6.1 401.2 22% 

GIL6 234.7 28 2.03 304.6 36% 299.4 12 1.6 343.0 33% 

SBG2 257.8 16 4.01 471.5 38% 457.5 9 2.6 631.3 56% 

CAR1 279.2 23 5.34 447.7 30% 393.1 14 4.2 617.0 43% 

SHL4 350.5 20 3.77 617.4 45% 419.6 10 3.8 665.1 40% 

TAN3 353.8 20 4.55 684.0 45% 363.6 11 5.2 772.7 36% 

EBO1 372.9 17 4.47 549.7 41% 339.4 11 5.9 554.2 27% 

SHL2 411.2 25 5.14 1087.2 48% 220.5 12 6.5 562.0 33% 

  

  



Table 3 displays the EII reaches that were denoted as chronic.  For these EII reaches, the sample skew was 

again low.  Since these EII reaches had high geometric means, the low skewness might be more a result 

of censored data (a limitation of the test) from the higher end of the E. coli counts than of a true symmetric 

probability distribution.  Nevertheless, the high geometric means and proportion of samples in each reach 

above 399 cfu per 100 mL point toward reaches that warrant additional scrutiny.    

Table 3:  “Chronic” EII Reaches.  EII reaches in this table had E. coli sample results with a geometric 
mean greater than 126 cfu per 100 mL for at least one of the data sets, and less than 50% of the samples 
included concentrations exceeding 399 cfu per 100 mL. 

EII 
Reach 

2005-2018 Data Set 2012-2018 Data Set 

Geometric 
Mean 

Count Skew Arithmetic 
Mean 

% Above 
399 

Geometric 
Mean 

Count Skew Arithmetic 
Mean 

% Above 
399 

FOR3 203.3 5 6.24 475.7 40% 870.9 2 2.6 1020.8 100% 

BLU3 313.3 23 4.04 454.7 52% 310.2 12 2.4 392.8 42% 

CCW2 321.0 20 4.69 466.2 50% 307.6 10 1.3 334.3 40% 

BLU1 323.5 22 3.88 558.7 55% 533.8 12 3.4 722.8 67% 

BOG2 384.0 23 4.32 663.7 52% 425.9 12 4.4 597.5 50% 

TYS1 418.0 24 3.39 636.5 54% 519.5 15 2.3 618.5 60% 

EBO3 468.9 11 4.22 827.2 64% 759.3 7 2.8 1167.8 86% 

HRS2 472.6 25 3.99 777.1 60% 393.5 11 2.2 501.0 55% 

BMK1 562.6 24 4.24 803.2 63% 587.3 12 2.8 790.9 67% 

WLR1 569.9 26 3.95 931.4 62% 369.7 12 2.6 547.8 50% 

WBO2 578.1 23 3.22 887.9 70% 728.8 12 2.9 973.4 75% 

WLN4 592.7 24 4.98 1084.5 67% 472.8 12 4.8 853.8 50% 

EBO2 722.1 23 3.27 1381.6 74% 1134.6 12 2.1 1433.5 92% 

HRP1 763.9 20 2.93 1178.5 80% 1025.1 12 2.1 1276.1 92% 

BLU2 781.0 24 2.79 1157.6 75% 1127.2 12 2.1 1395.4 92% 

FOR4 798.4 19 2.73 1077.3 84% 817.9 9 3.0 1232.3 78% 

WLR2 849.5 24 1.94 1023.1 83% 1173.1 12 1.2 1253.6 100% 

BMK2 851.9 8 2.75 1110.6 88% 948.6 6 2.7 1237.5 83% 

LWA4 883.1 20 2.45 1157.2 80% 655.1 9 3.2 906.2 67% 

BMK3 998.1 20 2.35 1335.7 85% 874.6 11 2.2 1219.4 82% 

WLR3 1066.4 16 1.95 1399.5 94% 1226.0 8 1.8 1526.0 88% 

BOG3 1136.4 23 2.01 1434.5 91% 1250.1 12 1.8 1480.2 100% 

JOH1 1201.0 8 2.98 1932.8 88% 283.1 2 1.9 309.7 50% 

SHL1 1524.5 24 1.77 1836.8 100% 1757.6 12 1.1 1890.6 100% 

 

  



Discussion 
 
The analysis above classified all of Austin’s EII creeks into three categories with the goal of informing the 
identification of potential solutions that can reduce fecal contamination and informing the public on the 
bacteriological water quality context of creek reaches.  For instance, reaches classified as chronic might 
indicate which sections of creek may suffer from leaking or discharging wastewater.  Similarly, this 
classification can assist the public in knowing which reaches to avoid and which are more likely to be 
suitable for contact recreation.  However, this classification does not provide a means of tracking and 
monitoring the status of creeks for bacteriological water quality.  To accurately track and monitor the 
status of the creek would require assessing future measurements against the variation from its “baseline” 
or control.  Without a statistical interval representing the variation in the baseline, it becomes difficult for 
decision makers to separate any signal of future contamination from the noise of natural variation.  An 
additional consideration in assessing the status of the creeks is its relevance regarding human health.  
Future measurements could indicate a signal outside the baseline statistical intervals, but that signal could 
be acceptable for human health.  This section will propose a statistical framework for assessing future 
measurements and review a mathematical model to place the health risks of concentrations of E. coli in 
context. 
 
A Decision Framework for Monitoring Bacterial Water Quality 
 
A critical aspect in any monitoring program is the ability to use the data to inform decision-makers on the 
status and trends of the phenomena being monitored.  The two main questions addressed by a monitoring 
program are whether the monitored phenomenon is changing and whether its current state is suitable 
for some designated use.  Either question can be answered by first assuming that samples collected from 
the environment (in this case, a waterbody) behave as random samples from identical probability 
distributions.  Because there is a non-zero probability of obtaining large values in the samples due to the 
randomness, errors in assessments can occur.  These error rates can be estimated and accounted for.   
 
The question of whether the waterbody is changing is addressed through prediction intervals.  Given 
background (or historical) data that is assumed to be unimpacted, an upper and lower limit can be 
calculated positing that future measurements outside these limits is indicative of an impacted process.  
The question of the current status of the waterbody is addressed through acceptance criteria.  With this, 
a threshold is defined and is compared to a population statistic (i.e. the geometric mean or average) of 
the data set.  It is inferred that the data set is representative of the target population (i.e. concentrations 
of E. coli in the waterbody).  If the threshold is exceeded, then the target population is out of compliance 
and that designated use is discouraged.     
 
Both approaches require normality in the data.  The assumptions for the monitoring program above 
dictate a normal distribution of the data and equal variance.  If data are not normally distributed (as is the 
case with E. coli data), then a logarithmic transformation can be applied to the data.  For the remaining 
discussion on a monitoring framework, it is assumed that the E. coli data will be log-transformed.  Note 
again, that the average of the logarithms equals the logarithm of the geometric mean. 
Prediction intervals are calculated from prior (or baseline) data collected using the following equation: 

(𝐿𝑃𝐼, 𝑈𝑃𝐼) = �̅� ± 𝑡(𝑛−1,1−𝛼) ∙ 𝑠 ∙ √1 +
1

𝑛
   (3) 

In this equation, (LPI, UPI) is the interval containing the lower and upper predictions, respectively.  
Additionally, �̅� is the sample average (i.e. the average of the logarithms), s is the sample standard 



deviation, n is the number of samples, and α is the false positive error rate.  The term t(n-1,1-α) is the point 
along the Student’s t-distribution with a 1-α probability of occurring and with n-1 degrees of freedom.   
 
This approach is effective at indicating whether the waterbody is changing or has already been impacted.  
The false positive error rate can aid decision makers in knowing their probability of incorrectly detecting 
an impact.  As the false positive error rate decreases, the prediction interval increases.  However, the 
degree to which a lower false positive error rate is needed comes with a higher false negative error rate.   
A higher false negative error rate can lead to incorrectly stating that no impact has been observed.  Thus, 
the smaller the false positive rate, the larger the false negative rate, and vice versa.  The balancing of the 
two error rates is determined by selecting which is more important: 

 saving resources by minimizing false positives, versus  

 detecting changes by minimizing false negatives.   
 
An indication of an impact through prediction intervals can warrant a corrective action.   The degree of 
corrective action (e.g. further investigation or remediation) depends on whether the objective of the 
decision-making framework was in detecting gradual or abrupt changes.  While effective at detecting 
change, this is purely a statistical approach with minimal relevance to human health.     
 
Using acceptance criteria, one compares a threshold (typically a regulatory or a human health threshold) 
to a population statistic (in this case, the average of the logarithms) from sampled data.  This can be done 
through hypothesis testing.  In null hypothesis testing, the mean of a population is assumed to be equal 
to (or less than) some value.  Data then will show the probability that this assumption is true.  In this case, 
the smaller the false positive, the more confident that decision makers can be regarding the safety of a 
waterbody rather than if it is changing.   
 
The main difference between the two monitoring methods is that decision makers can choose a threshold 
value rather than use values determined by baseline data.  If the threshold is close to the geometric mean, 
then decision makers need to balance the false positive with the probability of a false negative.  
Specifically, the false negative (saying a waterbody is acceptable when in reality, it isn’t) should carry more 
weight to those charged with the public trust.  This balancing is typically done by obtaining more samples 
or by reducing one of the error rates. 
 
Acceptance criteria is useful in indicating to the public whether a waterbody has demonstrated suitability 
for recreational use based on historic data.  This can also be combined with prediction intervals to 
determine whether a waterbody is changing for a complete picture of bacteriological water quality in 
every water body in Austin.  What’s missing, then, is a method to find a relevant threshold.   
 
Modeling Bacteriological Water Quality 
The final theoretical consideration regarding bacteriological water quality is its influence on human 
health.  Wymer (2007) describes a plausible model relating bacterial concentration to human response.  
This theoretical model is then fitted to results from other epidemiological studies. 
 
Equation 1 describes a simple model relating bacterial concentration to an illness rate.  However, this 
simple linear model appears to break down at low concentrations of E. coli.  Wymer (2007) presents this 
as an alternative model: 
   𝑦 = 𝐵𝑅 + (𝑀𝑅 − 𝐵𝑅)[1 − (1 − 𝑝(1))𝑤]    (3)  



For this model, BR is the Baseline Risk of contracting gastroenteritis (GE) from contact recreation with 
waters having no pathogens, MR is the maximum risk of contracting GE from contact recreation with 
waters having an overabundance of pathogens, and p(1) is mean probability that one pathogen will cause 
an infection once it has invaded a susceptible individual.  From this, we can estimate the mean probability 
of one pathogen not causing an infection as (1-p(1)) and the mean probability of w pathogens not causing 
an infection as (1-p(1))w.  Therefore, the mean probability of w pathogens causing an infection is [1-(1-
p(1))w].  Since E. coli is the indicator bacteria, rather than the actual infecting pathogen, the exponential 
term, w, will need to relate between the two and is defined as: 

   𝑤 = 10𝑎𝑥𝑏 ∙ 𝑣 = 10𝑎+𝑏∙log(𝑥) ∙ 𝑣    (4) 

For this equation, a and b are coefficients from a linear regression, x is the concentration of E. coli per 
100mL and v is the average volume intake of water in 100 mL units by an individual. 
   
Equations 3 and 4 then provide a good description of GE illness rates given an indicator organism.  
Weidermann (2006) conducted an experimental design exploring GE illness rates from contact recreation.  
Their experimental design consisted of asking bathers to submerse themselves for a total of 10 minutes 
no less than three times.  Incidence rates of GE illness within one week after exposure were then recorded 
in addition to incidence rates of GE in non-bathers.  The results showed that the Maximum Risk of 
contracting GE illness from E. coli was 8.4% and a Baseline Risk of GE was 2.8%.  Wymer (2007) takes these 
results and then assumes a p(1) of 0.17 (similar to a rotovirus), 30mL of water ingested5, and a and b equal 
to -2.17 and 1.46, respectively.   
 
From these parameter assumptions, two such scenarios are presented here (Figure 1) to explore the 
illness risks from the indicator pathogen of E. coli in Austin’s creeks.  The first model is a high water volume 
scenario where prolonged contact recreation (i.e. swimming or wading by small children) is likely and the 
water ingested is assumed to be about 30 mL.  The second model is a low water volume scenario where 
minimal contact recreation (i.e. wading) is expected and the amount of water ingested is about 3 mL.  The 
high water volume model shows that the maximum risk occurs when the concentration of E. coli in the 
water is about 40 cfu per 100 mL with a baseline risk at about 5 cfu per 100 mL.  The low water volume 
model shows a baseline risk until the concentration of E. coli approaches about 10 cfu per 100 mL, then 
increases to the maximum risk at a concentration of E. coli of about 100 cfu per 100 mL.      
 

                                                           
5 This is equivalent to about 1 fluid ounce. 



 
Figure 1:  A model of Human Health Response (GE or gastroenteritis) from a Dose of E. coli.  This model 
was based on a Baseline Risk of 2.8%, a Maximum Risk of 8.4%, a p(1) of 0.17, 3 mL and 30 mL of water 
ingested, and coefficients for a and b equal to 2.17 and 1.46, respectively.    
 
By adjusting either p(1), v, or a and b, the model will shift either right or left; and adjusting MR and BR will 
move the upper and lower bounds of the infection rates.  While it is unclear what parameters will 
accurately model infection rates due to contact recreation in Austin’s creeks, it is clear that there are two 
inflection points in the model that can function as health-based thresholds.  The first inflection point is at 
an E. coli concentration below which illness rates will not decrease.  This corresponds to the Baseline Risk.  
The second inflection point is at the higher E. coli concentration at which point no additional E. coli 
concentrations will lead to more illnesses. 

 
Conclusions 
 
Public health is one of the more important responsibilities of municipal government.  This responsibility 

intersects with the mission of the Watershed Protection Department as it relates to the water quality of 

our creeks and lakes.  A facet of this mission is measured by the attainment of satisfactory contact 

recreational use of Austin’s creeks.  Current state rules and federal guidance have established contact 

recreational water quality standards, which are used in this assessment to contextualize creek reaches 

and characterize the scale and nature of E.coli concentration.  This report classifies Austin’s creeks (by 

segments or “reaches”) into three categories: chronic, episodic and acceptable.  Reaches that are classified 

as chronic indicate a higher sustained concentration of bacteria loading and may warrant the highest 

priority for action, including investigation to identify the source and a method to resolve the 

contamination (Table 3).  Those EII reaches classified as episodic (Table 2) are influenced by either a more 

sporadic or a more diffuse source of bacteria loading that may reflect an anomaly or low level of bacterial 

loading.  These EII reaches should continue to be monitored and assessed but are a lower priority for 

action and may not warrant additional investigation.  However, the data for episodic reaches should be 

further characterized to determine if there is a trend that may indicate whether the elevated geometric 

mean for that reach is an on-going problem that should be addressed, or if there was a problem that has 

already been resolved.  The lowest prioritization is recommended for EII reaches in the acceptable 
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category (Appendix A).  These reaches generally benefit from low bacterial loading, but can also be further 

characterized to determine whether any large sample skews are recent or are due to problems that have 

already been resolved.   

Recommendations 
 
The state regulatory water quality standards for contact recreational use serve as an adequate screening 
tool for evaluating the results of EII E. coli data, for prioritizing response, and for informing the public on 
the suitability of the creeks for contact recreational use.  However, a more efficient monitoring program 
requires a more complex mathematical approach.  Successful monitoring programs include both sampling 
and assessment of the sampled data.  ERM has successfully sampled the EII reaches for over twenty years, 
but has assessed the data using a scoring method ill-equipped to separate any signal from noise.  However, 
the sampling effectiveness and assessment can be improved with application of a more rigorous and 
statistical method.   
 
First, prediction intervals should be constructed for each reach using the log-transformed E.coli data.  This 
will serve to function as an assessment of the data within the EII monitoring program and E.coli Follow-
up protocol.  Thus, any future E.coli measurements outside their respective intervals can alert staff to a 
potential contamination event that warrants further investigation.   
 
Second, for screening and categorization of the EII reaches, the use of geometric mean should continue 
to function as an effective statistic of each reach if used in conjunction with the sample skew, which 
appears to inform users on episodic events more effectively than a single sample criteria.  Higher sample 
skew can apprise users to the higher likelihood of obtaining much higher concentrations of E. coli.  Smaller 
sample skews indicate a symmetric probability distribution and thus a higher probability of being alerted 
to higher concentrations of E. coli.  Furthermore, the sample skew can aid in evaluating whether prediction 
intervals for a monitored EII reach are sensitive to anomalous data.  However, more research and data is 
needed to set applicable criteria on the sample skew.    
 
Third, acceptance criteria can be examined further to test its feasibility in statistically evaluating whether 
a monitored EII reach is lower than some relevant threshold.  Current state E. coli standards can be used 
as preliminary thresholds in acceptance criteria.  However, a model of risk of contracting a GE illness can 
provide more context.  The model explored in this paper sets two assumed thresholds, one at a Baseline 
Risk and the other at the Maximum Risk, based on the volume of water ingested.  Further examinations 
of these thresholds using different proxies for volume of water ingested is recommended.  Examples of 
other proxies include inputting the physical characteristics of the waterbody and/or the frequency of 
contact with the water into the model, which is similar to the approach taken by the State of Texas in 
setting contract recreational standards.  Under these assumptions, thresholds derived from the model for 
each reach can be set, and each reach’s probability of exceeding these thresholds can be determined from 
the latest data.  This method can be used to score each reach and inform staff on a more refined 
prioritization of creeks based on the potential for contracting GE illness due to fecal contamination.            
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Appendix A 
Statistical measures for EII reaches that met criteria as “acceptable” with a geometric mean less 

than 126 col/100mL using data sets from two periods: 2005-2018 and 2012-2018. 

 

 

 2005-2018 Data Set 2012-2018 Data Set 

EII Reach 
Geometric 

Mean Count Skew 
Arithmetic 

Mean % >399 
Geometric 

Mean Count Skew 
Arithmetic 

Mean % >399 

RIN2 8.2 14 6.2 17.3 0% 6.3 9 8.0 15.5 0% 

BAR3 9.4 21 3.4 15.4 0% 6.0 12 4.5 10.7 0% 

LBA1 12.7 23 2.2 17.1 0% 11.7 15 2.0 14.8 0% 

SLA1 13.8 23 7.5 32.3 0% 8.6 15 4.1 17.8 0% 

ELM1 14.5 2 6.9 105.4 0%      
BEW1 15.9 3 2.2 20.3 0% 15.9 3 2.2 20.3 0% 

PAN1 17.0 19 15.6 51.7 5% 10.8 11 18.5 63.5 9% 

SFD2 17.1 13 40.9 210.5 8% 14.8 11 35.8 241.5 9% 

BER3 18.7 22 8.2 41.3 0% 13.8 14 4.2 26.9 0% 

MAR2 19.6 15 9.4 57.1 0% 22.2 11 8.5 69.0 0% 

DKR1 20.9 28 16.4 58.3 4% 32.3 12 13.4 92.3 8% 

LBA3 21.3 20 3.5 36.3 0% 17.9 12 4.6 30.4 0% 

BAR2 22.4 23 3.7 31.4 0% 25.9 12 2.4 31.5 0% 

WLB2 22.4 3 2.9 41.4 0% 22.4 3 3.0 41.4 0% 

BER1 23.8 20 2.7 37.6 0% 15.2 13 3.3 25.6 0% 

BUL2 25.1 34 5.3 41.7 0% 25.0 14 4.5 44.1 0% 

BAR5 25.4 16 6.2 61.9 0% 20.0 11 7.4 66.4 0% 

LBR2 25.4 13 14.0 76.7 8% 25.0 7 3.0 37.4 0% 

BEE1 25.4 21 2.4 33.2 0% 26.6 13 2.2 34.1 0% 

BUL3 25.8 35 60.5 109.4 3% 22.7 15 5.9 44.6 0% 

ONI6 26.2 22 12.3 82.2 9% 28.2 15 8.1 69.0 7% 

BER2 29.2 3 2.1 35.7 0%      
SLA3 31.5 19 4.6 65.8 0% 46.5 12 3.5 89.4 0% 

BOG1 31.9 15 3.2 50.0 0% 21.5 11 2.6 30.8 0% 

TRK1 34.0 17 4.3 55.5 0% 38.2 11 4.3 65.3 0% 

NFD1 34.2 13 14.0 115.9 8% 21.8 9 7.0 49.6 0% 

BRW1 34.2 26 4.5 65.1 0% 33.9 14 6.4 59.7 0% 

CMF1 34.5 20 44.6 163.2 5% 29.1 11 4.7 48.0 0% 

ONI5 35.6 22 2.7 47.7 0% 28.5 15 2.6 36.2 0% 

LBA2 36.8 21 17.6 107.8 5% 33.4 13 18.6 132.1 8% 

MAH2 37.5 3 3.7 114.4 0% 37.5 3 3.8 114.3 0% 

BUL4 38.8 32 5.2 68.7 0% 65.6 15 4.2 99.8 0% 

BAR4 39.2 24 39.2 129.1 4% 35.1 12 3.6 49.9 0% 
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 2005-2018 Data Set 2012-2018 Data Set 

EII Reach 
Geometric 

Mean Count Skew 
Arithmetic 

Mean % >399 
Geometric 

Mean Count Skew 
Arithmetic 

Mean % >399 

LBE1 40.1 2 0.5 40.5 0%      

BSY1 41.0 7 2.7 51.9 0% 41.0 7 2.7 51.8 0% 

LBR1 41.3 20 11.6 127.4 10% 41.0 13 11.7 154.6 15% 

CWC1 42.6 6 4.4 59.6 0% 42.6 6 4.4 59.5 0% 

ONI4 42.6 23 27.8 151.1 4% 40.4 15 26.4 190.4 7% 

BEE2 44.2 23 6.7 88.7 4% 60.8 14 5.6 119.2 7% 

DRE2 45.6 22 7.8 110.9 5% 34.4 13 5.8 58.0 0% 

ONI2 46.3 23 4.6 78.0 0% 61.6 15 3.9 92.0 0% 

BEE3 47.0 23 2.2 62.4 0% 53.2 15 2.1 69.4 0% 

LKC3 48.1 23 4.2 79.0 0% 34.9 15 5.9 59.5 0% 

BUL5 50.0 32 39.4 135.0 3% 44.5 15 35.6 205.6 7% 

BAR1 51.2 16 9.4 114.7 6% 54.9 10 3.7 81.2 0% 

WBL2 51.4 21 4.7 103.3 0% 63.7 13 3.7 122.9 0% 

RIN3 51.8 4 2.8 63.4 0% 45.0 1 - 45.0 0% 

ELM2 52.0 9 5.2 134.6 11% 43.0 4 6.2 83.9 0% 

CTM1 52.5 21 8.5 112.0 5% 46.9 13 3.6 63.6 0% 

FOR1 57.8 6 2.1 74.6 0% 56.1 5 2.4 76.0 0% 

LWA1 59.1 24 7.1 108.5 8% 59.7 12 7.1 127.5 8% 

WLN1 61.1 16 3.0 90.0 0% 35.4 8 4.1 55.2 0% 

WLB3 63.0 3 1.8 69.4 0% 63.0 3 1.8 69.4 0% 

RIN1 63.0 27 12.7 128.4 4% 103.5 15 9.4 192.8 7% 

LCK2 63.9 4 2.5 82.5 0% 63.9 4 2.5 82.5 0% 

ONI1 64.8 22 2.9 92.3 0% 74.4 14 2.7 97.2 0% 

RAT2 65.1 3 0.5 66.0 0% 51.2 1 - 51.2 0% 

WLN2 71.4 23 10.1 218.8 13% 74.3 12 10.4 164.1 8% 

WMS2 72.6 14 5.5 142.8 14% 60.7 10 4.3 93.7 0% 

TYN1 75.4 19 8.6 168.6 11% 39.0 10 22.3 140.0 10% 

LKC2 76.5 20 13.2 156.3 5% 63.6 12 16.5 182.2 8% 

CRN1 76.7 15 7.4 136.3 13% 60.4 9 1.3 65.8 0% 

DRN1 78.4 22 3.4 117.6 5% 59.9 14 5.1 105.9 7% 

HAM1 79.6 3 3.2 99.9 0% 79.6 3 3.2 99.9 0% 

GIL2 80.8 27 6.1 140.4 7% 57.8 11 2.4 77.3 0% 

SFD1 84.0 22 13.7 269.5 18% 92.0 11 14.8 344.0 18% 

SBG1 86.6 18 11.6 262.1 17% 73.8 10 14.0 306.1 20% 

BAR6 93.2 17 15.0 326.2 12% 108.1 12 12.4 418.9 17% 

ONI3 93.4 23 3.7 137.7 9% 120.6 15 3.3 171.7 13% 

WMS1 93.6 24 15.9 239.2 13% 69.3 12 2.8 95.4 0% 

TAN1 96.3 18 2.6 157.7 6% 133.4 11 2.2 184.2 9% 
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2005-2018 Data Set 2012-2018 Data Set 

EII Reach 
Geometric 
Mean Count Skew 

Arithmetic 
Mean % >399 

Geometric 
Mean Count Skew 

Arithmetic 
Mean % >399 

LWA2 101.3 24 5.8 193.5 17% 118.4 12 5.1 219.2 17% 

GIL4 106.0 19 7.3 271.0 21% 120.3 9 10.3 284.0 22% 

LCK3 112.1 5 4.7 164.8 20% 112.1 5 4.7 164.8 20% 

BUL1 116.5 36 18.2 391.0 17% 190.4 15 11.7 699.8 27% 

MAH3 119.7 3 1.4 127.0 0% 119.7 3 1.4 127.0 0% 

LKC1 121.4 19 15.2 256.5 5% 144.7 11 12.9 360.7 9% 

FOR2 122.2 8 11.0 290.3 13% 107.2 7 13.2 287.8 14% 

DRE1 122.7 19 9.1 288.4 16% 160.0 11 7.3 310.1 18% 

CAR2 123.9 20 3.4 225.6 25% 119.7 12 3.4 223.8 25% 


